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Quantum field theory for the three-body constrained lattice Bose gas.
I1. Application to the many-body problem
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We analyze the ground-state phase diagram of attractive lattice bosons, which are stabilized by a three-body
onsite hardcore constraint. A salient feature of this model is an Ising-type transition from a conventional atomic
superfluid to a dimer superfluid with vanishing atomic condensate. The study builds on an exact mapping of the
constrained model to a theory of coupled bosons with polynomial interactions, proposed in a related paper [S.
Diehl, M. Baranov, A. Daley, and P. Zoller, Phys. Rev. B 82, 064509 (2010).]. In this framework, we focus by
analytical means on aspects of the phase diagram which are intimately connected to interactions, and are thus
not accessible in a mean-field plus spin-wave approach. First, we determine shifts in the mean-field phase
border, which are most pronounced in the low-density regime. Second, the investigation of the strong coupling
limit reveals the existence of a “continuous supersolid,” which emerges as a consequence of enhanced sym-
metries in this regime. We discuss its experimental signatures. Third, we show that the Ising-type phase
transition, driven first order via the competition of long-wavelength modes at generic fillings, terminates into
a true Ising quantum critical point in the vicinity of half filling.

DOI: 10.1103/PhysRevB.82.064510

I. INTRODUCTION

It was recently recognized that two-body and three-body
loss processes for bosons in an optical lattice could give rise
to effective models involving two-body and three-body hard-
core constraints, respectively. The two-body case was ob-
served in an experiment with Feshbach molecules,!? while it
has been proposed theoretically to take advantage of strong
three-body loss to create a three-body hardcore constraint in
bosonic** and fermionic® lattice systems. The mechanism
behind the constraint is that the dissipative process sup-
presses coherent tunneling processes that would create
double or triple occupation and lead to loss.

A salient feature of a bosonic lattice gas with three-body
onsite constraint is the possibility to tune it to attractive two-
body interactions. The associated dimer bound-state forma-
tion has a profound effect on the many-body system, result-
ing in an Ising-type quantum phase transition from a
conventional atomic superfluid to a dimer superfluid with
vanishing atomic order parameter but nonzero pairing corre-
lation. The possibility of observing Ising-type behavior in
cold atomic gases has been uncovered earlier by Radzi-
hovsky et al.%” and Romans et al.® in the context of resonant
Bose gases in the continuum, i.e., at low densities. This,
however, turns out to be challenging due to the poor stability
of the molecular Bose gas close to the resonance.’ Here, we
encounter a weak-coupling analog of this scenario on the
lattice, in which the stabilization of the system is provided by
the blockade mechanism leading to the three-body hardcore
constraint. Besides this feature, the presence of the lattice
leads to intriguing enrichments compared to the continuum
physics, as we will demonstrate in this paper.

The qualitative picture for the Ising transition can be ob-
tained within a simple Gutzwiller approach, in which the
three-body constraint is easily built in via choice of the an-
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satz wave function.> However, this treatment leaves a num-
ber of questions unanswered, which arise on various length
scales in the problem and misses out important—even
qualitative—aspects of the phase diagram as we will show.
On the microscopic scale, this concerns the bound-state for-
mation, as well as the correct form of the effective theory for
dimers in the strong-coupling limit. On the intermediate
scales, relevant to the thermodynamics, one may wonder to
what extent the phase border obtained within the mean field
is quantitatively accurate. Finally, a thorough analysis of the
competition of the long-range low-energy degrees of free-
dom is necessary to answer the question of the true nature of
the phase transition. We note that all these effects are tied to
interactions, thus not available in a simple spin-wave exten-
sion of the mean-field theory.

This paper is the second one of a sequence of two related
papers. In Ref. 10, we have developed a quantum field the-
oretical framework which makes it possible to analytically
address the above questions in two and three spatial dimen-
sions. It is based on an exact mapping of the constrained
lattice boson model to a coupled theory of two unconstrained
bosonic degrees with polynomial interactions. In the related
paper,'® we have concentrated on the formal development of
this mapping and performed calculations in the ‘“‘vacuum
limits” corresponding to zero and maximum filling n=0,2,
which are characterized by the absence of spontaneous sym-
metry breaking. In the present paper we apply this formalism
to the many-body problem. We concentrate on the three
interaction-related aspects of the many-body problem men-
tioned above. First, we address the quantitative question of
shifts in the phase border, with the result that they are pro-
nounced at low densities, while basically absent as the filling
increases to its maximum n=2. Second, making use of the
perturbative results obtained in Ref. 10, we consider the
many-body physics in the strong-coupling regime and pre-
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dict the existence of a new collective mode at half filling n
=1, whose presence results from a symmetry enhancement
from the conventional phase rotation symmetry U(1)
=S0(2) exhibited by bosonic systems to an SO(3) symme-
try. We propose an experiment to test this scenario, exploring
its consequences both analytically as well as using exact nu-
merical methods in one dimension (1D). These studies lead
us to call the system in this regime a ‘“continuous
supersolid”—a supersolid with a tunable ratio between the
superfluid and the charge-density-wave (CDW) order param-
eters (cf. an analogous phenomenon in magnetic'"!'? and at-
tractive fermion'? systems). Third, in a long-wavelength
analysis the phase transition turns out to be first order for
generic fillings due to the Coleman-Weinberg mechanism.'
This is in line with the low-density continuum analysis,
which has been carried out in detail in Ref. 7. In our con-
strained lattice system, however, we find that the radiatively
induced first-order transition terminates into a true Ising
quantum critical point in the vicinity of half filling, which
connects the two ordered phases of atomic and dimer super-
fluid. Its origin may be traced back to a zero crossing of the
dimer compressibility together with a sequence of Ward
identities, thus being protected by symmetry. An estimate of
the correlation length suggests a broad domain of intermedi-
ate fillings 1/2=<n=<3/2 on which the correlation length
greatly exceeds the dimensions of typical optical lattices,
suggesting that the Ising quantum critical behavior could be
experimentally observed. Our analytical approach enables us
to elucidate the mechanisms behind all our findings, estab-
lishing that the latter two effects are unique features of the
three-body constraint. Our main results are summarized in
the phase diagram presented in Fig. 1.

The paper is organized as follows. In Sec. II we first re-
view the steps that lead from the constrained theory to the
interacting boson theory. We then prove Goldstone’s theorem
for the effective action obeying the constraint principle and
formulate the equation of state. In Sec. III, we pass on to the
calculation of the phase border beyond mean field. Section
IV discusses the many-body physics in the strong-coupling
limit and in Sec. V we investigate the nature of the phase
transition by performing the long-wavelength limit of the
effective action. Our conclusions are drawn in Sec. VL.

A summary of our results together with a closer discus-
sion of experimental realizations is presented in Ref. 15.

II. QUANTUM FIELD THEORY FOR THE MANY-BODY
PROBLEM

In this section we address two aspects which are particu-
larly relevant for the many-body physics and have not been
discussed in Ref. 10. The realization of Goldstone’s theorem
in our constrained model and the equation of state. To pre-
pare for this discussion and set the notation, we review the
construction of the quantum field theory in Sec. II A, also
making the paper rather self-contained. The reader familiar
with the construction, and the reader who is more interested
in the physics results of this work may jump this section.

A. Review of the construction

The starting point for our analysis is the Bose-Hubbard
model with a three-body onsite hardcore constraint
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FIG. 1. (Color online) Phase diagram for the attractive three-
body hardcore constrained attractive Bose-Hubbard model. The
lower curve (black online) is the mean-field result, while the middle
and upper curves (blue and red online) correspond to d=2,3, re-
spectively, with fluctuations taken into account. The bound state
formation of dimers (n=0) and di-holes (n=2) indicated by crosses
[the upper crosses (red online) for d=2 and the lower ones (blue
online) for d=3], determines the endpoints of the critical lines (Sec.
III). A bicritical point, characterized by energetically degenerate but
different orders (superfluid and charge-density wave) is reached as-
ymptotically at half filling. It can be detected experimentally ramp-
ing a superlattice (Sec. IV). An Ising quantum critical point, con-
necting the two ordered phases, is predicted in the vicinity of half
filling, while the correlation length is large but finite away from this
point (Sec. V).

1
H=—J2ajaj_ﬂzﬁi+_U2ﬁi(ﬁi—1), a‘BEO.
I i 25
(1)

Here, a; and a] are the bosonic creation and annihilation
operators, J is the hopping matrix element, u the chemical
potential, and U the onsite interaction energy. The summa-
tion in the first term is performed over nearest neighbors.
Because of the constraint, the original bosonic onsite Hilbert
space is reduced to the three states |a>, a=0,1,2.

Following Altman and Auerbach,'® we introduce three op-
erators which generate the three onsite states

|a) = tL’i|Vac> = (a)) (@) Yvac), > fz,,fa,i =1 (2

from some auxiliary “vacuum” state |vac). The operators are
not independent but obey a holonomic constraint as indicated
above. The Hamiltonian in terms of operators ¢, reads

H= _JE [KEIO)KEH))T +2K§21)%K§21) + \E(ngl)K;lO)T
(@)
H KK = 2 1+ 200) + U iy (3)
i i

where

(10) _ (21) _ f A 4T
K=t K=t Aei=t it

1

Note that in this representation of the constrained Hamil-
tonian, the conventional roles of interaction and hopping are
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reversed while the interaction enters the quadratic part of the
Hamiltonian, the hopping term gives rise to effective kine-
matic interactions. The representation is therefore ideally
suited in a strong-coupling limit.

In a naive Gross-Pitaevski treatment of the Hamiltonian,
achieved by replacing the operators with complex-valued
amplitudes #,,—f,; in Eq. (3), reproduces precisely the
Gutzwiller mean-field energy, i.e., a classical Hamiltonian
field theory for spatially varying amplitudes f,;, where the
holonomic constraint E,f;,;fa’ﬁl is the normalization of the
onsite wave function. We now show how one can introduce a
convenient description of the theory on the quantum level.
To illustrate the method we consider the case of vanishing
density n—0 (the generalization to an arbitrary density 0
=n=2 will be given below). In this limit, it is convenient to
express the #;; operators in terms of #,; and f,; operators
using the constraint. Writing 7y ;=|fo]exp i¢; we observe
that the phase ¢; is unphysical: it can be eliminated via a
local redefinition of the remaining operators, ta,—ta,ei‘Pi (a
=1,2). Thus, we may consider ¢, as real and replace f;

X”2 X=1-7;—n,; in K (10) . Obviously, the square roots
are impracticable for any quantum field theory because they
give rise to vertices of arbitrarily high order. To eliminate
this problem, we use the fact that the matrix elements of X i” 2
and X; on our subspace are the same: either 1 or 0. Conse-
quently, on the subspace we may replace

K(lo)_ﬁ X — tl X Xi=(1-1y,;—1y,), (4)

and analogous for the Hermitian conjugate. More formally,
the replacement can be justified by noting that the constraint
operator is a projection, X?:Xi, and that the Taylor represen-
tation for a function of such an operator is f(X)=£(0)(1
—X)+X£(1)."7 With this implementation of the constraint, the
remaining operators #;,, can be treated as standard bosonic
operators acting in a complete Hilbert space H =II/H;, where
H;={|n;)|my}, n;,;m;=0,1,... is a bosonic Hilbert space for
“atoms” ¢, and “dimers” t, at each site i |n;)
=(n;!)""2(£})"]0); and |m;)=(m;!)~""*(£5)"|0);. The onsite Hil-
bert spaces H; can naturally be splitted into a physical sub-
space P; with n;+m;=0 or 1 and an orthogonal unphysical
one U; with n;+m;>1, 'H;=P;®U;. Important for our con-
struction is that the Hamiltonian H has no matrix elements
between physical and unphysical subspaces, (u|H|p)
=(p|H|u)=0, where |p)e P=II;P; and |u) e U=11U;, and,
therefore, is block diagonal, H=Hp+H,,. As a result, these
subspaces do not mix during evolution, and all quantities,
both dynamical and statistical, factorize. For example, for the
partition function one has

Z=Trexp(- BH)=Zp+ 7y
=2 {plexp(- BHp)Ip)
{p}

+ % (ulexp(— BH,)|u). (5)

Consequently, if we find a way to discriminate between the
physical and unphysical contributions, we may indeed con-
ceive the operators ¢, , as conventional bosonic ones.

Such a setting is provided by using the effective action to
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encode the physical information of the theory, see, e.g., Ref.
18. It is defined as the Legendre transform of the free energy
Wljl=log Z[j] [we introduce a source term j=(j;,j,j2./3)
and use é= (t-:' s tl ) t; > IZ)]
: . WL/
F[§]=—Wm+fﬂ§, £==5 (6)

where the new variable §=<§) is the field expectation value
or the “classical” field. The effective action has the following
representation in terms of a functional integral:

a'[€]
S
(7)

where o= § & and the Euclidean action S=[3 (9,11
+150,t,+H[t,,1,]. The Hamiltonian now is to be 1nterpreted
as a function for classical though fluctuating, time-dependent
fields. The last identity in Eq. (7) is the full quantum equa-
tion of motion, and the equilibrium situation we are inter-
ested in is specified by j=0, where no mixing between the
physical and the unphysical sectors occurs. Usually, the most
general form of the effective action is only restricted by the
symmetries of the microscopic theory. Since, as shown
above, no couplings mapping from Uf/« P are generated, we
have identified a means to distinguish physical vs unphysical
contributions by writing down the most general form for the
effective action for the physical sector by directly excluding
couplings which would violate this constraint.

Now we generalize the procedure to arbitrary density. We
first follow'? but then apply our exact procedure. While we
have so far replaced the #, operator, which generates the
mean-field vacuum state |Q>=Hit$,i|vac>, we now consider a
more general mean-field vacuum

=11 (2 ra exp(ia¢)|a>,-)

i

exp-I[¢&]= fDégexp S[§+5§]+f 1o, j=——=

=11 [E o exp(iaqs)z;i] vac) [T b fvac).  (8)

For site-independent amplitude moduli r,, these states allow
for the description of homogeneous ground states with spon-
taneous phase symmetry breaking. If, e.g., all r,# 0, the re-
quirement of a fixed spontaneously chosen overall conden-
sate phase ¢ requires the phase relation 6,=ad; this fixed
phase relation is the manifestation of spontaneous symmetry
breaking in the Fock space. We can now introduce a new set
of operators bL (a=0,1,2) in which b(T) creates the mean-
field vacuum and will be eliminated. Such a transformation
is performed via a two-parameter unitary rotation, whose ro-
tation angles are chosen such that the new operators fluctuate
around the new vacuum state and do not feature expectation
values

bZl = (R(}RX)aBtTB,i (9)

with the explicit form of the rotation matrices
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cos 60/2 0 sin 6/2¢%¢
Ry= 0 1 0 ,
—sin 6/2¢73% 0 cos 6/2
1 0 0
R,=|0 cosx2 —sin x/2e? |. (10)
0 sin x/2e7®  cos x/2

A finite 6()) corresponds to a finite amplitude in [2)(|1)) and
we will see below how these quantities are fixed via the
Goldstone’s theorem. The precise relation is

ro=cos 0/2, r;=sin 6/2sin /2, r,=sin 6/2 cos x/2.

(1)

At this point we can repeat the steps described above for the
case n=0 in complete analogy. The constraint is imple-
mented via the replacement

by, —X;=1-b] b ;= bl by, bybo;—Xi. (12)

The second line is simply a rearrangement of the holonomic
constraint. The resulting bosonic Hamiltonian, which is then
quantized by means of a functional integral, is rather com-
plex, and we will analyze it below. However, it exhibits a
simple structure,

H=EGW+HSW+Hint' (13)

Egw is the Gutzwiller mean-field energy and Hgy describes
the quadratic spin-wave theory.”’ The corrections to the
mean-field phase diagram, as well as nontrivial effects in the
deep infrared physics which we are interested in here, are not
captured at this quadratic level. They are all encoded in the
interaction part H;,,.

Choosing the qualitative form of the ground-state prereq-
uisites a certain knowledge about the physics of the system.
Equipped with the right qualitative ground state, we can then
perform quantitative calculations beyond the mean-field
level based on our mapping. Indeed, Eq. (13) suggests an
interpretation of our construction as an exact requantization
procedure of the Gutzwiller mean-field theory. This is in
complete analogy to the conventional treatment of, e.g.,
bosonic continuum systems with broken symmetries, where
in a first step a certain order parameter is chosen and the
theory is expanded around it. However, on the lattice the
right choice of the qualitative features of the ground state
might be less obvious. For example, spatial modulations of
the order parameter are possible, such as exhibited by
charge-density waves. This is easily incorporated in the for-
malism, and such a situation will be indeed encountered in
Sec. IV.

In sum, we have obtained the following simple result:
supplying the most general form of the effective action with
a constraint principle, the evaluation can proceed as in a
standard polynomial boson theory. Similar to symmetries,
the restrictions on the full theory leverage over from the
microscopic theory. Unlike symmetries, the relevance of the
constraint depends on scale, being restrictive on short dis-
tances, while on long distances power counting arguments
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lead to an effectively unconstrained though interacting spin-
wave theory with two degrees of freedom (see below). In
practical computations, we can evaluate a theory of standard
coupled bosonic fields. This opens up the powerful toolbox
of modern quantum field theoretical methods for calculations
in onsite constrained models.

B. Goldstone’s theorem and the constraint principle

We will derive Goldstone’s theorem from a comparison of
the full quantum equation of motion and the effective poten-
tial. The latter is defined as the homogeneous part of the
effective action, obtained by inserting temporally and spa-
tially homogeneous field configurations u
=I[b],b,,b},b,1/ Vs (Vo1 =M/ T is the quantization vol-
ume, M the number of lattice sites in each lattice direction).
The possible dependences of the effective action and poten-
tial on the fields are strongly restricted by both symmetry
and constraint principle; the effective potential is further lim-
ited by the requirement of homogeneity. We will show here
that the constraint leads to an additional U(1) invariant on
which the effective potential may depend with no counterpart
in unconstrained theories, but we will also demonstrate that
it does not break the validity of Goldstone’s theorem—in line
with the intuition that the microscopic constraint would not
affect the long-wavelength physics too strongly. Note, how-
ever, that the constraint has an impact on the long-
wavelength physics, as it is indirectly responsible for the
presence of the Ising quantum critical point close to unit
filling n=1 (cf. Sec. V B). Therefore, a thorough discussion
of Goldstone’s theorem seem adequate.

Let us construct the most general dependence of the ef-
fective potential on the variables b, b,. For simplicity of the
presentation, we focus on a spontaneously broken symmetry
for the dimers (6+ 0, ) while the atoms are in the normal
phase (x=0, ). The latter field can therefore be excluded
from the following considerations. There are two possible
terms associated to the original 7, degree of freedom that
might appear in the effective action. Either it appears as a
local combination ﬁz,i:t;itz,i or as a bilocal (in general,
n-local) combination, such that the constraint has to be taken
into account via proper combination with ), e.g., t;,ito,i'
While the local combination respects the U(1) symmetry, the
second term must appear with a conjugate partner as
t;,ito,ﬂ), jt2j- In order to implement the finite density, we now
apply the rotation prescription f,;=sbg,;+cb,;, ty;=cby;
—s*b,; and subsequently impose the constraint by;—X;.
(Here and in the following, we abbreviate s
=sin /2e %%, c=cos 6/2.) Now we specialize to the ho-
mogeneous part of the effective action: we Fourier transform
the operators and restrict to the zero frequency and momen-
tum part of the combinations. We then find that the effective
potential can be written as a function of two invariants

U(p, NN,

p=(sX +cb))(sX + cb,)
=52+ cs(Xby + béX) +(c? = Sz)b;bz - Szb-{bl )
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N=(sX+ cbg) (cX - sb,)
=cs + c*b3X — s°Xby — 2csbyb, — csbib,, (14)

where X and b, denote the zero momentum and frequency
components of these field expressions, and without loss of
generality we have chosen s real. Note that neglecting the
constraint by setting X— 1, and considering low densities,
s—0/2, c¢c—1, we recover the standard quadratic form for
the condensate density from the local combination, p=l;§l;2,
with 132=s+b2. However, the constraint principle requires a
more complicated form of p as well as the account for a
second invariant A"\ In the following, we will be concerned
with first and second derivatives of the effective potential
with respect to bz,bz, which are evaluated at the physical
point b,= bz—bl—bl—O Thus, we may set X—1,b, bi
— 0 from the outset. Now we will show that the most general
dependence of U/ can be further restricted. For b, /(7) ,b;i(T),
we introduce the basis of Hermitian fields o,(7), 7,(7),

b (1) = L[a () + im(D).

balq) = —=[o(q) + im(= )], (15)
V2

which as the original fields do not carry expectation values.
Here we have used the Fourier conventions

by (1) = f iby(q),  bh (1) = f e ibi(q),
q q

= (rx). q=(0.), f J‘”"Z (16)

We calculate the local combination in terms of these opera-
tors

1 —
p=s>+(c?- SZ)E(G'z + 1) +\2cs0, (17)
[0=0(g=0), m=m(g=0)] and we observe that A"\, to the
relevant quadratic order, can be written as
AN =5+ (2 = sH)p - 2(cs)*0?. (18)

Thus, the most general dependence of the effective potential
on the homogeneous fields o, 7 is given by

Up,d?). (19)

Now we study the mass matrix, which can be calculated
from the effective potential as the second derivative with
respect to o, 7. In particular, the form of the effective poten-
tial implies for the 7 mass or gap

&ZU(p,ol)‘ {azp (a) ”
dmdm o=m=0 &7721/{ ’ “ o=m=0 (20)

(primes denote derivatives w.r.t. the invariant p) with
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— =0, —5=c"—s". (21)

To complete the derivation of Goldstone’s theorem, we cal-
culate the equation of motion for o from the effective action,
but immediately specialize to the case of homogeneous
fields,

o _ U(p,a?) 5 U(p,d?)

- |
= = +42 U'='().
807 | hom Jo 7 o> Ve

(22)

By construction we have =0 as the solution of the equation
of motion, and furthermore in the presence of spontaneous
symmetry breaking cs # 0. Thus

U =0. (23)

This simple relation indicates the presence of the gapless
Goldstone mode. The 7 gap calculated in Eq. (20) vanishes
due to Eq. (23), and since dp/dm=0, cf. Eq. (21). This prop-
erty is protected by the U(1) symmetry of the problem.
Though the form of the effective potential is more compli-
cated than in the continuum at low densities, where the ef-
fective potential depends only on the low-density limit of the
invariant p, we can explicitly prove Goldstone’s theorem.
Note that the equation of motion [Eq. (22)] for o also ex-
cludes any homogeneous linear term in this field. The same
is true for the 77 mode. Such terms would not be compatible
with the equilibrium condition Eq. (22). This excludes non-
zero couplings from the homogeneous terms ~o, 7 or bz,b;
in the effective action. Furthermore, via Eq. (14) the linear
terms bz,b2 are connected by the constraint pr1n01ple to cu-
bic terms: only the combinations ~b,X,Xb} occur in the
effective potential. Thus, combining Goldstone’s theorem
and the constraint principle, we see that the coefficients of
the terms b,X ,Xb; must vanish, i.e.,

5T T
85 163,1855 | nom O] 1801182, | pom
oI’
B 5b215b2,15b;1 hom
= % =0. (24)
5b1,i5b1,i5b2,i hom

In the presence of an atomic condensate y # 0, analogous
equilibrium conditions can be derived for the b, field. In the
symmetric phases n=0,2 (=0, ), no distinction between
the phase and the amplitude mode appears and the mass ma-
trix is degenerate. In this case, Goldstone’s theorem reduces
to the condition for the existence of a dimer/dihole bound
state.

C. Equation of state

The equation of state is obtained as the average over the

particle number operator N =27;, n;=n;;+2i,; Thus, after
rotation we have for the particle density
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n=(N)M*= 25>+ (c* = |s)[(b1b1) + 2(b1by)]

+2¢[s"(Xb,) + s(b3X)] = — %{. (25)

The second equality results from the path integral represen-

tation of the effective action and is due to the coupling —,UN
in the microscopic action. The connected two-point functions
are given by the traces of the full Green’s functions for b,
and b,. A convenient shorthand to relate the connected
Green’s functions to its one-particle irreducible counterpart
is £=(b}.by.,b3.by),
(biby) =(:6) =Tr G, (bibo) =(&:£,) =Tr Gy,
G,,= ([ - ﬂ (26)
ab ab> ab 5§a 5§b :

where we suppress spatial or momentum indices. Tr runs
over these as well as over the internal (field-space) indices.
More explicit formulas will be discussed in the next section.
Furthermore, the three-point correlation is related to the one-
particle irreducible three-point vertex via Eq. (25) (cf., e.g.,
Ref. 18)

(Xby) == (bibiby) — (bbyb)
= 2 Tr[GlaGZb + G3aG4b]G4cF(3)

abc?
a,b,c

3
o o1
T 88,068,086,

At this point, we stress that the parameter |s|? in the equa-
tion of state [Eq. (25)] must not be interpreted as the con-
densate fraction, though the formal appearance naively sug-
gests such an interpretation. Instead, 2|s|> should be seen as
the classical or mean-field contribution to the total particle
density, and the rest of the equation is due to fluctuations on
top of this mean-field state. A standard interpretation of the
above equation is only possible in the low-density limits n
—0,2. Omitting the three-point correlations, Eq. (25) re-
duces to leading order to the familiar form from thermody-
namics in the continuum for #— 0 while taking a similar
structure for 6— ,

6=~ 0:n=2(56/2)* +{blb,) + 2(b}b,),

27)

0= mn=2-[2(60/2)>+(bib)) +2(bib,)].  (28)

In these cases, 66/2 may be interpreted as the condensate
order parameter. We furthermore observe from Eq. (25) that
around 6=m/2 there is a point where fluctuations are
strongly suppressed compared to the mean-field contribution
due to a cancellation. For a proper definition of the conden-
sate fraction in the system, we can use the Gutzwiller expres-
sion for the original boson operator expectation, (b;)=sc,
however, with the value of # determined from the implicit
condition Eq. (23). More generally, we emphasize that Egs.
(23) and (25) provide the two exact, but implicit conditions
that determine the two parameters 6, u. A further nonzero
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expectation value for the single atom degree of freedom,
described by x # 0, adds a further such condition analogous
to Eq. (23).

Our effective action formalism is capable to describe the
system at any finite temperature. Calculations in this regime
are beyond the scope of this paper, but let us sketch how the
high-temperature disordered phase is described within our
theory. Increasing the temperature in the system will popu-
late the connected parts of Eq. (25) increasingly such that at
the phase transition to the symmetric phase without symme-
try breaking f;,f> — 0. In other words, the condensate angles
vanish, 6, x— 0. We may interpret this scenario as the com-
plete population of the “vacuum amplitude” f,, which is
needed to fulfill the holonomic constraint but does not enter
the equation of state. The effect of destruction of the order
parameters can also be seen from the condition mi
=U/dm*=0. A finite temperature will act to generate a
positive thermal mass or gap contribution, such that at some
temperature there exists no finite 6,y and a gapless mode
ceases to exist. At this point, where Goldstone’s theorem can
no longer be satisfied, the symmetry-broken phases become
unstable and the system enters the disordered high-
temperature phase.

II1. ASF-DSF PHASE BORDER

In this section we embark the calculation of the phase
border. We will study the phase border by approaching it
from the dimer superfluid side where there is no atomic con-
densate and calculate at which interaction strength the atoms
become unstable toward an atomic superfluid. Thus, we first
provide the explicit form of the Hamiltonian in the presence
of a dimer superfluid, but for atoms in the normal phase. We
then consider the low-density limits n—0,2. In these limits,
we can establish a controlled small-density expansion de-
scribing the deviation from exactly n=0,2. The central ob-
jects for the discussion are the atomic and dimer (dihole)
Green’s functions, which we know exactly in the limits n
=0,2.10 The analysis reveals the intuitive result that the lead-
ing many-body effect is a modification of the vacuum (n
=0,2) Green’s functions due to the condensate mean field.
The dominant fluctuations in these limits are thus vacuum
fluctuations renormalizing the Green’s functions while the
many-body effects can be captured in terms of a Bogoliubov
or spin-wave theory. More specifically, we find that vacuum
fluctuations strongly modify the relation w(U) compared to
the mean-field relation w(U)=-U/2 while the role of many-
body effects consists mainly in depletion effects in the equa-
tion of state. We find that the high-energy vacuum fluctua-
tions have a much more pronounced quantitative effect on
the phase border than the condensate depletion in the limit
n—0. For n— 2 instead, both effects are rather small, which
may be understood in terms of an already tightly bound di-
hole state in the region of atom criticality. Based on these
insights, we do not expect a strong shift in the phase border
in the region n=1, which takes place at even stronger cou-
pling, and thus more deeply bound two-particle states. We
therefore propose an extrapolation of the scheme from the
controlled limits n=0,2 to the intermediate regime n= 1.
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A. Rotated Hamiltonian for the dimer superfluid phase

Let us now focus on the phase border to the dimer super-
fluid state. As anticipated above, we address it from the
dimer superfluid (DSF) side where |1) is not macroscopically
populated and thus x=0. The kinetic- and potential-energy
operators read, in the new field coordinates,

K§10)=bh(cbo,i—s*bz,i), KD = (5* b+ b3 )by,

PV =b] by, PP =(s"bj + cb) ) sy, + cby )

(29)
with ¢=cos 6/2, s=sin 0/2¢%% as above. We can now
write the Hamiltonian operator in terms of the new variables
and implement the constraint via by ;— X;=(1 -7, ;—1, ), ab-
sorbing the phase of b, into the remaining two degrees of
freedom as discussed in Sec. II A. Further making use of the
projective property X-Z:X ; we find

H[b,.by]= ngr? +H1(<?|i)+H§pm)+Hp0t’

kin

HYY + HGY = -2 [(2+2[s])b] XiXjb,

(@
+ (2]s]? + Db} by ] by - 3c(sh] XibS by ;
+ S*b'{’in,inbl’j)],

HEW =~ 27X [(* -
(i.j)

—sby by b5 b)) +Hel,

|S 2)b bl,inbl,j + C(S*X[bl,iijl,j

Hyo= (= 2+ UIMIsP + (= 2+ U)(c* = [sP) 2 b3 o,
+[-p—-(-2u+ U)|5|2]2 b;,ibl,i
+(=2p+U)c> [sb;iXi +5"X;by 1. (30)

We remind the reader that, as shown in Ref. 10 and briefly
discussed in Sec. IT A, these operators b, may be inter-
preted as standard bosonic operators. The cubic term in the
second line of H,, can be omitted from the outset, and we
will do this in the following. As argued above, the coefficient
of the linear part has to vanish due to the equation of motion,
i.e., the equilibrium condition, and the cubic parts are con-
nected to the linear ones via Eq. (24), such that their coeffi-
cient has to vanish as well. However, this does not exclude
the possibility of nonlocal cubic terms as they appear in the
kinetic terms of the Hamiltonian. The total Euclidean action
in the presence of condensation reads

S[bl,b2]=Jd7-<2 bi,i‘?fbl,i+b;i‘97b2,i+H[blsb2]>’

(31)

where the Hamiltonian is to be interpreted in the Heisenberg
picture and as a function of classical field variables. Quan-
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tizing this theory with the functional integral leads precisely
to the representation of the effective action Eq. (7).

B. Low-density limits n=0,2

In the following, we will analyze the theory in the vicinity
of the physical vacua where n=0,2, described by 6,=0, .
The limits n=0,2 have been discussed in Ref. 10 in detail.
The Hamiltonians governing these situations describe the
scattering of few particles in the absence of many-body ef-
fects and can be written as

== E [gn,lb)lr,iXinbl,j + gn,Zb;jbl,ij,in,i
()

[~ +
+ \"Zf(b;,ibl,ixjfl,j + bl,ijbI,in,i)]

+ E [(U - Zﬂn)ﬁli - /'Lnﬁl,il (32)

The operators b, represent the bosonic single and two-
particle excitations, corresponding to atoms and dimers, re-
spectively, holes and diholes. Here, for n=0 we have g,
=J, 802=2J, pmo=p and for n=2, g,,=2J, g:,=J, up=
—u+U. At these points the exact solution of the (two-body)
scattering problem, and thereby an exact calculation of the
atomic and dimer Green’s function, is available as shown in
Ref. 10. While the case of the atomic Green’s function is
trivial as there are no renormalization effects in the vacuum,
for the dimers/diholes we find the results

dd
G;l(w;,uo,k) =U+ |:f (277q)d_

1 -1
2(€q+ Eq_k)+iw—2,u0 ’

_ 3.
G, (w32 k) = U+ Z(lw— 2u5)

4 (27T)d—4(6q+ €r) Fiw—=2u |
(33)

We will now perform a controlled expansion in the conden-
sate angle deviation 60<<1 from the special points 6,=0, 7.
It corresponds to a Bogoliubov approximation for the con-
densation physics but with coupling constants obtained from
the exact solution of the vacuum scattering problem. The
procedure amounts to a resummation of ladder diagrams.
These vacuum fluctuations are responsible for strong shifts
in the phase border as we will see.

Our expansion is defined with Hamiltonians of the form

560
H=H,+ 75}1,1 +0O(86°). (34)

The additional Hamiltonian SH, generates new scattering
vertices which are O(86). Diagrams with more than one of
the new vertices may thus be discarded, and we may restrict
our attention to diagrams with at most one of them. They will
be discussed in a moment.

In the low-density cases n=0,2 the discussion can be
lead in parallel due to the similar mathematical structure of
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the Hamiltonians. Around 6,=0, we replace c=1, s=066/2
and the additional Hamiltonian reads

SHy=—J 2 \N2[Xby X;by ;— b5 by b by )+ Xiby bl b
(i)
+H.c. (35)

Similarly, around 6y=r, setting s=1, c¢=-5660/2 we find
5H2:— 5H0 (36)

Note, that the zero-order Hamiltonians H, are related by a
more complicated transformation of parameters, reflecting
the absence of a particle-hole symmetry.

Let us now discuss the impact of the additional Hamil-
tonian. The stability of the ASF phase is encoded in the full
atomic-mass matrix, i.e., the inverse Green’s function
Gjl(w; ©,q) at zero frequency and momentum. If the eigen-
values of the mass matrix are all positive, the phase without
atomic condensate (i.e., the condensed dimer phase) is
stable. The instability toward a state with atomic condensate
can thus be inferred from the vanishing of an eigenvalue of
this matrix or

det G7'(w=0;,q=0)=0. (37)

Thus we discuss the beyond mean-field effects modifying the
inverse atomic Green’s function. From the exact solutions of
the vacuum problems at 6,=0, 7 we know that in these lim-
its the inverse atom Green’s function is not directly renor-
malized: there are no diagrams in the vacuum limits which
cause renormalization, but clearly, the function w(U) enter-
ing the atom propagator changes when taking the exact
dimer or dihole Green’s function into account. We now con-
centrate on the effects of 6H,,. At linear order in 66, we find
a direct condensate contribution to the atom inverse propa-
gator on the off-diagonal. This is the contribution familiar
from Bogoliubov theory in the low-density limit, and we see
that our generalization to arbitrary density produces such a
structure also at high density. Now we have to consider the
effect of the new vertices. As argued above, we can restrict
ourselves to diagrams carrying a single one of them. We
focus on diagrams which renormalize the inverse atom
propagator. These are tadpole diagrams. The diagrams renor-
malizing the diagonal entries must be O(86%) in order to
ensure particle-number conservation. The diagrams renor-
malizing the off-diagonal entries must involve one of the
new vertices ((86), and the trace over the inner line scales
with a function f(86) with f(0)=0. Consequently, the fluc-
tuation contributions are higher than linear order for both
diagonal and off-diagonal entries and can be discarded. Thus,
the full atomic mass matrix at O(56) reads [we separate true
potential (binding) energy from kinetic energy, w(U)
=E,(U)/2-Jz at n=0 and u(U)=-E,(U)/2+U+2Jz at n
~2,10 7=24 the lattice coordination number]

—E,(U)2 23272862 )

G_l _ szs > =0 :< [~
""0—0( #a=0) 2\2Jz80/2 - E(U)/2
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i —E ()2 —2\20z8012
Gl,lozw(wz();,“«’qzo):( - )
b —2\20z802 - E,U)2
(38)

Hence we conclude that the dominant effect beyond mean-
field theory, which implies the simple linear relation w(U)
=U/2 for the binding energy [see Ref. 3, but the argument is
repeated below Eq. (43) for convenience], comes from
vacuum fluctuations, which determine the value of wu(U) [or,
equivalently, E,(U)] as a function of the interaction strength
U. These high-energy fluctuations are responsible for shifts
of the critical point.

The critical interaction strength can now be extracted
from the characteristic equation Eq. (37) which read explic-
itly, in both limits,

[- E,(U)R2] = 2(Jz860)* = 0. (39)

The physical solution is given by E,(U,)==22J2586, i.e., in
the vacuum limit 66— 0 also the binding energy vanishes.
Thus, the critical interaction strength for the formation of the
dimer or dihole bound state coincides with the energy scale
of the single particle excitations (atoms or holes) becoming
critical. In these limits, we may quantitatively estimate the
dependence of the interaction strength on e.g., the conden-
sate fraction in two and three dimensions. In d=3, the bind-
ing energy starts quadratically due to the non-analyticity in
the fluctuation integral. In contrast, in d=2, the fluctuation
integral features the well known logarithmic behavior. This
yields, in dimensionless units, the physical solutions

n— 0:d=3:0,= Uy(1 +2%0/56),

_ 4250\
d=2:U.=2m logT

_ - U, -3
n—>2:d:3:UC:U2(1+2‘3/40'| |2~|| \’%),
U,

_ 24250\
d=2:U.=-3+m|log A2

(40)
with Uy=~-4/3, 0~0.42, A=5.50, and U,~-11/3 5. We
note that due to the formation of the dihole bound state at a
finite interaction strength despite the logarithmic dependence
of the fluctuation integral, also the critical interaction
strength for n— 2 remains finite.

Importantly, we find a non-analytic dependence of the
critical interaction strength on the condensate density &6
which is due to the strong fluctuation effects in the vicinity
of the bound state formation. This is in contrast to the mean
field result, which shows a linear dependence on the conden-
sate angle 56==12n (see Ref. 3 and Eq. (45) below).

C. Phase diagram

The analysis of the low-density limits in the last para-
graph reveals that the strongest beyond mean-field effect
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comes from the high-energy vacuum fluctuations renormal-
izing the relation w(U) away from its mean-field value u
=U/2. In our practical implementation of the calculation of
the phase boundary, we will rely on this separation of
vacuum and many-body effects. For the calculation of the
phase diagram at a fixed total density n, we now also take
modifications of the mean-field equation of state n=2|s|? into
account. We discuss the equation of state [Eq. (25)] in an
approximation where we omit the three-point correlations
from the outset. Furthermore, in our concrete computations,
we restrict ourselves to the calculation of the atomic deple-
tion <b1b1>. We will find that this contribution is small com-
pared to the condensate part and thus has a small influence
on the phase border only—the dominant effect shifting the
border stems from the vacuum fluctuations leading to a
strong modification of u(U). Based on this observation, we
do not expect that the dimer depletion strongly modifies the
phase border.

In order to calculate the atomic depletion, we first con-
sider the quadratic spin-wave theory

Sl[bi’bl] = — JE [(C2 + 2|S|2)b?ibl,j + \“‘HEC(S*bl,ibl,j
(i.j)

+5b] bl )1+ [= = (= 2p+ DIPIZ b} by

i®+py Ay )

Ay —io+pg

- i@
q

b
X{;m>]
bl(_ q)
Pq=Po+Opq  Po=—u(l=25%) - Us* = Jz(1 +5°),
Opg=2(1+ s2)5eq,

Ag=Ag+ 688, Ag=2\2Jzcs, SAg=4\2csde,,

5eq=JE(1—cos q)- (41)
A

The matrix in the second line is the inverse atomic Green’s
function in frequency and momentum space GIl(w;/L,q).
With these preparations, the approximate equation of state
and the atomic depletion is found to be

n=2|s]?+ (c - |s])biby),

bTb =Tr G . _l ﬂ __Pq 1
<1 p="Tr 1(w,M,(I)—2 (277_)4 \’m— s
q q
(42)

where we have performed the frequency integral by closing
the contour in the upper half plane.

As stated above, we consider the renormalization effects
on the inverse atom propagator which are present already in
the vacuum problem. These are encoded in the value of the
chemical potential u(U) and depend on dimension. The con-
dition determining u reads
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Gy(w=0;1,q=0)=0, (43)

where in the vicinity of n=0 we use the full dimer Green’s
function G; and close to n=2 the dihole expression G, as
given in Eq. (33). In contrast, in the mean-field approxima-
tion which uses the “bare” inverse dimer propagator iw
—2u+U, the above condition evaluates to u(U)=-|U|/2 in-
dependent of dimension and of whether we are close to zero
or maximum filling. The critical point is determined by the
atoms becoming unstable toward condensation. This is indi-
cated by the condition

det G7' (w=0;,q=0)=pj— A2 =0. (44)

We solve the system of Egs. (42)—(44) in two and three di-
mensions numerically. In particular, Eq. (43) decouples from
the other two equations within our approximation scheme
yielding the renormalized relation w(U), such that we merely
need to solve Egs. (42) and (44) with w(U) as an input. The
result for the phase diagram is plotted in Fig. 1. We compare
these results to the mean-field approximation, which uses
u=U/2 and n=2[s|? for the equation of state, resulting in the
critical interaction
Ye o T Tmma iy
=-2(N1=n/2 +\n)~. (45)
Jz

As anticipated above, the beyond mean-field effects are
mainly due to the fluctuations accompanying the bound-state
formation, which strongly modify the relation u(U) as com-
pared to the mean-field value, while we find a subdominant
role of the many-body depletion effects. The shape of the
phase boundary directly reflects the non-analytic, dimension
dependent behavior associated to the bound state formation.
The quantitative effect is more pronounced below half filling
than above. This may be traced back to the fact that the
domain where nonperturbative fluctuation effects play a role
is smaller in the high density regime than at small densities,
cf. 19 A simple picture can be given as follows: In the limits
n—0,2, the criteria for the atom criticality (zero eigenvalue
of GII) and the microscopic bound state formation (zero ei-
genvalue of G)) coincide and fluctuation effects on the
phase boundary are substantial. Moving away from these
limits, the absolute value of the critical interaction increases,
and the microscopic bound state is already tightly bound at
the point where atom criticality if reached. The critical line
then approaches the mean field phase boundary up to small
perturbative corrections. Thus, though our approximation is
lacking a strict ordering principle when moving away from
the limits n— 0,2, we nevertheless expect the mean field re-
sult to be rather accuate, see Figs. 2 and 3).

IV. MANY-BODY PHYSICS IN THE STRONG-COUPLING
REGIME AND A CONTINUOUS SUPERSOLID

In this section we investigate the system in the strongly
correlated limit J/|U|— 0. In particular, we identify a bicriti-
cal point at half filling of atoms (n=1), at which homoge-
neous superfluid order (spontaneous phase symmetry break-
ing) and charge-density wave order (spontaneous translation
symmetry breaking) are degenerate. The bicritical point is
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Atomic Superfluid
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0.0 0.5 1.0 15 20

FIG. 2. (Color online) ASF-DSF phase border for the attractive
three-body hardcore constrained Bose-Hubbard model. The lower
curve (black online) is the mean field result, while the upper (red
online) and the middle (blue online) curves correspond to d=2,3.
The crosses denote the endpoints of the critical ines. For high den-
sities, the d=2,3 results are very close to each other except for a
tiny region close to maximal fillings.

due to a symmetry enhancement from the conventional
U(1)=50(2) to SO(3), which is seen to be intimately con-
nected to the three-body constraint. We term the system in
this regime a continuous supersolid due to the degeneracy of
phase and translation symmetry-breaking orders, where the
order parameter may be rotated continuously from one to the
other without energetic cost. This behavior is in contrast to
other occurrences of supersolidity in bosonic systems.”!
Though this state is only reached asymptotically, it governs
the physics in strong coupling and close to half filling, and
we work out the observable consequences of this situation.
We also propose a simple experiment to verify this scenario.

A. Analytical approach

Before embarking the calculation, let us stress that our
beyond mean-field approach is indispensable to settle these

0.04] n_2|s|2,:

0.02|

0.00

—0.02|

~0.04] i
L | . . . . | . . . . | ]

0.0 0.5 1.0 1.5 2.0

FIG. 3. Condensate depletion due to the atomic two-point func-
tion in two dimensions. The overall shape of the curve with zero
crossing and sign change is determined by the function c?—|s|?
premultiplying the two-point function, cf. Eq. (25). The small over-
all size shows that the depletion effects produce only very tiny
corrections to the phase border.
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issues. Indeed, a straightforward comparison of the simple
Gutzwiller mean-field energies of the dimer superfluid and a
charge-density wave (CDW) state yields degenerate energies
for these two states for all fillings. The Gutzwiller mean-field
CDW state is given by [CDW)=II; o\en|2):|0);11, and for a
fixed average density n has energy density Ecpw/M?
=(U/2)n, which precisely equals the mean-field energy den-
sity Epgp/ M@ of the dimer superfluid for all particle densi-
ties. In consequence, the question of the correct ground state
cannot be decided within the simple Gutzwiller mean-field
theory (though a superfluid is clearly more plausible for in-
commensurate fillings). It is necessary to first integrate out
the high-energy single-particle degrees of freedom, making
the dimers true propagating and interacting physical excita-
tions. Moreover, even the second-order perturbation theory is
not fully conclusive as we will see. The deviation from the
second-order result, calculated in Ref. 10, plays a key role in
the following discussion.

In Ref. 10 we have calculated the effective theory in the
strong-coupling limit. Perturbatively integrating out the
single-particle excitations up to fourth order and taking the
constraint principle for the effective action into account, we
found the low-energy effective Hamiltonian

Hyp=—12, (t;iXintlj — Ny iy ;) = a2 fiy;  (46)
(i) i

with t=2J%/|U|, u, the effective dimer chemical potential
and the dimensionless ratio of nearest-neighbor interaction to
hopping A=v/(2¢) discussed below. Since in the perturbative
limit there are only virtual single-particle excitations, we
may replace the constraint operator X;=1-7;;—#,;— 1
—7,,. In this case we have the following mapping to effec-
tive spin 1/2 degrees of freedom, which will more clearly
reveal the physics of the model

+
ST =

Xy = ()4l v,
; Sj+lSj—( )tz’ij,

i = (_)
s; =5 lSj—( YXits ;s

5=y =172, (47)

where on the bipartite lattice with sublattices A and B we use
(=)=+ for je A and (-)=- for j € B. Up to a constant the
Hamiltonian then takes the form

Hep=212, (sis}+ s+ Nsis) = g 5. (48)
(ij) i

The anisotropy parameter A=v/(27) evaluates to A\=1 in the

second-order perturbation theory, corresponding to an isotro-

pic antiferromagnetic Heisenberg model—note the sign

change in ¢ due to the sublattice-dependent sign in Eq. (47).

The fourth-order calculation yields>?

2
)\=1—8(z—1)<li]) <1 (49)

This result has been derived in Ref. 10, cf. Sec. VD2, Eq.
(60). It is obtained as the ratio of dimer-dimer interaction and
dimer hopping coefficient calculated at fourth order. Next-to-
nearest-neighbor terms also appear at fourth order, but their
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numerical coefficient is much smaller than for the nearest
neighbors due to the restricted pathways contributing to
these terms, and are thus neglected.

For A=1 and half filling of atoms n=1, where the term
involving the chemical potential vanishes, the system exhib-
its a symmetry enhancement from SO(2)=U(1) (corre-
sponding to rotations in the x-y plane, or phase rotations,
generated by exp i0,S*<exp i QZN with global operators S¢
=25, N =31, ;) to SO(3) (corresponding to arbitrary rota-
tions on the Bloch sphere exp iZ,60,5%).

The SO(3) invariance of the quadratic part in Eq. (48)
also implies a simple transformation behavior of the total
Hamiltonian under a discrete particle-hole or charge-
conjugation transformation: The special choice U
=exp(i7S*) implements the mapping

+ —1 £ T
8; — U sjU—sj,

57— U‘lst: - s5. (50)
Under such a transformation N— M9—N and, hence, S°
—M?/2-S.. The particle-hole symmetry makes the phase
diagram of deeply bound dimers symmetric under the re-
placement 71, — 1 —7,. In general, such a symmetry is absent.
Moreover, it is also not present in the opposite limit of strong
repulsive interactions, which is asymmetric when 7, is re-
placed with 2—7,.

The SO(3) invariance is a peculiar feature of the leading
order perturbation theory. Its physical origin is well under-
stood in terms of the geometric argument which relates hop-
ping and interaction paths, cf. Sec. IVD in the companion
paper.'? At second order, no other interaction processes can
occur, and thus the hopping and interaction constants must
be equal. However, as seen in Ref. 10, at fourth-order per-
turbation theory additional interaction processes yield A <1,
thus reducing the symmetry to SO(2) and also spoiling the
particle-hole symmetry. In addition, several other terms are
generated, which describe next-to-nearest-neighbor hopping
and interaction or three- and four-spin interactions. Never-
theless, the proximity to the Heisenberg point A=1 has an
impact on the phase diagram, and we will use its well-known
properties to understand the phase diagram and the nature of
the low-lying excitations in the perturbative regime.

The order parameter for this model is given by the expec-

tation value of the Néel vector V=3 j(—)jsf‘. Its vector char-
acter is under SO(3), [S“,Nﬁ]zieaﬁy/(ﬁ, i.e., global spin ro-
tations transform the Néel vector components into each
other. Translating back to the original boson language, a fi-

nite (./(/Z> corresponds to charge-density wave order while

finite values of (A*),(A?) indicate DSF order. For the iso-
tropic Heisenberg model without magnetic field (or at half
filling), [H,S5%]=0 for all &, and thus CDW and DSF order
are degenerate. The perturbative limit of our model thus re-
alizes a bicritical point?® with two competing orders. Such an
enhancement of internal symmetries is well known in mag-
netic systems,'!> but less common and intuitive in physi-
cally realizable bosonic models, which usually only exhibit
phase symmetry. Due to the degeneracy of phase and trans-
lation symmetry-broken states, both order parameters are ge-
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nerically nonzero, and we may term the state a continuous
supersolid, whose experimental implications are studied be-
low.

We can make this discussion even more explicit when
changing from the spin to a hardcore boson language

s;=(=1Vh;, st=(=1)hl, si=hih;-=, (51)

N | =

where the hardcore bosons obey hn—O We consider infini-
tesimal SO(3) transformation W1th the parameters g <l[a
=(x,y.2)], 857=i[S,s}], where S= Elﬁsﬁs The exphclt form
of the above transformatlon reads (s —s* + zsy )

+ .7 +
Os; =—ies;—ig,s;,

ez -
5Sj—18 s;+ies;,

i i
8si=——g"s] + ESST (52)

with e=g,+ie,. In terms of bosonic hardcore operators one
thus obtains

hl = (- l)j[—iS(hfhj- %)] —ieh,
, 1
Oh;= (- 1){!’8*(’1;’5'— 5)] +iezhy,
5<h*h )-( 1)]|:—_8 h*+2sh} (53)

Note that the last terms in the first and second lines are just
usual gauge transformations.

The change in the operators results in the change in their
mean-field values. If one introduces the usual superfluid or-
der parameter ¢y=2h;) and the CDW order parameter N
E(./Q/Z>=Zj(—1)f<(h;hj—%)), then the corresponding change
in the order parameters is
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Sp=ieh+ie"N,

ON=- és*¢* + ésw. (54)

It is easy to check that the above transformation leaves the
combination N?+|¢{? invariant. We therefore can conclude
that the SO(3) symmetry corresponds to canonical transfor-
mations of the dimer operators, which change both superfluid
and CDW order parameters but leave the combination A2
+|¢4? invariant.

Another important point about the SO(3) symmetry is that
it is broken for n# 1 not on the Hamiltonian level [the
Hamiltonian with A=1 is always SO(3) symmetric] but on
the level of the subset of states (with a fixed S%), on which it
has to be minimized. In a generic case n# 1 (and, hence,
S2#0) the subspace reduces the symmetry down to SO(2)
=U(1) gauge group. In the case n=1 with $*=0, however,
the subspace contains the manifold of spin-singlet [and,
therefore, SO(3) symmetric] states, which have the lowest
energy. The symmetry transformation corresponds simply to
the motion on this manifold.

A similar scenario [an enhancement to a pseudo SU(2)
symmetry] is actually observed in attractive lattice fermion
systems.!? Similar to the fermion system, the symmetry en-
hancement is thus a unique consequence of the three-body
hardcore constraint. Indeed, attractive lattice bosons without
such constraint, analyzed in detail by Petrosyan et al. and
Schmidt et al.,>* show a different behavior. Due to the pos-
sibility of virtually occupying a lattice site with three atoms,
it is found A=4. This places the unconstrained attractive
bosons in the “Ising limit,” which was analyzed further in the
latter reference.

As we find A <1 in fourth-order perturbation theory, the
bicritical point is approached from the homogeneous super-
fluid, which is energetically favored over the charge-density
wave. Nevertheless, we may expect important observable
consequences. Indeed, the symmetry enhancement SO(2)
—SO(3) implies the emergence of a second gapless, and
therefore collective, Goldstone mode. For a weakly explicitly
broken SO(3) symmetry, one still has a near gapless collec-
tive mode with experimentally observable consequences. We
propose an experiment, which is based on the idea of explic-
itly rotating the macroscopic Néel vector from the x-y plane
representing superfluidity to the z axis, realizing a CDW or-
dered state. We will also show that this experiment allows to
quantitatively characterize the pseudo-Goldstone mode.

To favor CDW ordering, we explicitly break the lattice
translation symmetry via introduction of a superlattice shift-
ing the single-particle energies on adjacent sites

- ,U«dE ﬁ2,i — = MAE ﬁZ,i - :“BE ﬁz,j
i ieA jeB

=- ME iy + 77(2 ;= 2 ﬁ2,j>’
i

ieA jeB
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— Ma— Mp
) = . 55
p="0 (55)

_ Mty
2

Here, u is and average chemical potential and v an imbal-
ance parameter. Now we calculate the mean-field ground
state as well as the spectrum of excitations of the effective
low-energy Hamiltonian (46), using the rotation formalism
(cf. Sec. II A). The approach is fully equivalent to the lead-
ing order 1/S expansion, which is not a well-controlled ex-
pansion for S=1/2, but is known to yield the main features
of the Heisenberg model in external fields.

At the Heisenberg point, the SO(3) spin symmetry re-
quires an enlarged parameter space for the order parameter
describing the ground state of the system. We consider an
ansatz parametrized by two angles for the rotation of the 7,
degree of freedom [in contrast to the U(1) =S0(2) case with
a single rotation angle for 1,],

cos(6+ ¢))/2

sin(0+ ¢;)/2e*® )
—sin(0 + @))/2¢7%¢

R(6,¢) = ( cos(6+ ¢)/2

(56)

Here, [=A,B is an index which depends on the sublattice A
or B, thus enabling the description of a spatially modulated
phase. For example, the choice =0, ¢,=0, @p=m de-
scribes a charge-density wave. The homogeneous choice 6
#0, @4=¢p=0 describes a superfluid ground state. The ro-
tation matrix is only 2 X 2 since we have integrated out the
atoms.

Expanding the thus rotated Hamiltonian, and replacing
by;— X;=1-n,, to second order we obtain

v
EpdM? == 217(spcpspcp — NS5s5) — g(sf\ +52) + E(Si —s53),

Hiyj, = {tz[— cpsp(ch — s3) + 2Nspsacal

+ (-t 77)CASA}E (b;,i +b, ;) +{tz[ - CASA(CIZ; - 523)
ieA

+ 2)\s§s3c3] + (= p—D)egsgt > (bi,,- +by)),
JjeB

! ¥
HSW = EE {[— (Cic% + S/Z\Slz;) - 2)\CASACBSB](b;jb2,i + b2,ib2,j)
@)
+ (cislz; + cési —2Ncys4cpsp)(by by i + b;ib;’j)}
+{2tz[2cp54Cps5 — )\s,zg(cf1 - si)] +(—p+ ﬂ)(ci

- si)}z b;in,i +[21z[2¢ 54555 — Nsa(ch — 53)]
ieA

+ (= p=)(cy—sp)] 2 b ba- (57)
jeB

Here s;,=sin(6+¢,), etc., and we have set the spontaneously
chosen phase ¢=0 without loss of generality. M is the total
number of sites in each lattice direction. Since we break the
lattice translation symmetry via our choice of the ansatz for
the ground state, it is important to be careful with the posi-
tion indices —b, ; are located on the sublattice A, b, ; on the
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TABLE 1. Low-energy dispersions in the perturbative regime (second order). z is the dynamic exponent,

w~|ql".

n=0 0<n<l1 n=1 1<n<2 n=2
z 2 1 1 2
No. of zero modes 1 1 2 1 1

sublattice B. Eventually we are interested in a situation at
fixed density. The local density operator to quadratic order
takes the form

2 2 A
fz,;fz,i =5/ + Clsl(b;,i +by;) +(cj =57 (58)

where [=A(B) for i € A(B). Thus, in the mean-field approxi-
mation the equation of state reads

2
n=N/M'= E(SE, +53). (59)

At half filling n=1, this implies sy=cp, sp=c,. Together
with the relations s,2+c,2: 1, within this approximation every-
thing may be expressed in terms of, e.g., s, alone. In particu-
lar, the mean-field energy determining the ground state takes
the form

EndM®==21z57(1 = s3)(1 =\) + 5255 —1).  (60)

The ground state is found from identifying the stable minima
with respect to variation in €, and thus we have dropped the
contribution from the chemical potential, as it contributes a
rotation-angle-independent constant only for effectively
fixed density. For v=0, the ground state for A <1 is the ho-
mogeneous superfluid with sizl/ 2. For A>1, the charge-
density wave with s,=0, sp=1 is favored. At the Heisen-
berg point A=1, both states are degenerate in accord with the
exact symmetry argument. Now we consider the relevant
case A <1. Tuning v away from zero by ramping the super-
lattice, the superfluid acquires a spatial modulation, siz(l
+1)/2, si=(1-v)/2, v=v/1z(\=1), where at a critical
value

|7, =tz(1 - \) = 81z(z - 1)(J/U)*  (61)

the SF is destroyed in favor of the CDW. Thus, ramping the
superlattice corresponds to rotating the Néel order parameter.
As we will see below, the critical value corresponds precisely
to the gap of the pseudo-Goldstone mode. Hence, via mea-
surement of the SF correlations,? which cease to exist at Ve,
one can quantitatively determine the characteristic property
of the additional collective mode.

The chemical potential u is determined from the equilib-
rium condition that the linear terms vanish, evaluating to u
=Mtz independent of v. Inserting this and the above expres-
sion for s,, and switching to the Lagrange formalism, we
obtain the Gaussian action

vl =1,

gq  hyl- w)]

1
== 8q—-q")[by(-q).b}
ZL,q' (q —q")[bs( q),bz(q)][hq(w) ¢

bz(CI') }
X[bi(—q» ’

]

hy(w) =iw+ tz{l + %(1 - VZ)Eq] ,

)‘;1(1—V2)+1]Eq, (62)

1
€= —2 COS @) -
a7y

The spectrum of excitations may be computed from the con-
dition that the determinant of the fluctuation matrix vanish.
We obtain

o(q)= = z((1+ [N =11 = "DE,+ D1 - )"~
(63)

For 7=0 and A<, the dispersion simplifies to w(q)
=+ 1Z[(Ng;+1)(1-€)]"2, and there is a single Goldstone
mode at q=0, corresponding to the spontaneously broken
U(1)=S0(2) symmetry in the dimer superfluid. For A=<1,
there is a second near gapless mode with gap 7z(1—\) lo-
cated at the edges of the Brillouin zone q=m. At the Heisen-
berg point A=1, this gap closes, and the system features the
two Goldstone modes corresponding to the spontaneously
broken SO(3) symmetry. The system is then at the bicritical
point where the order parameter can be freely rotated on the
Bloch sphere. In the general case, the gap of the second near
gapless mode is given by

A=1z(1-N)(1-12), (64)

and we observe that we reach a point where there are two
exactly gapless modes by tuning 7— ., 1»—1. In this
case, the two gapless modes correspond to the characteristic
excitations on an antiferromagnetic, or CDW, ground state,
and there is no superfluid order as the Bloch vector is con-
fined to the z axis. In Table I, we summarize the dispersions
found in the different density regimes in the leading order
perturbation theory limit A=1, and »=0.

In summary, we propose a conceptually simple experi-
ment that allows to rotate the macroscopic Néel vector order
parameter via ramping a superlattice. The measurement of
superfluid and density-density correlations® allows to moni-
tor this rotation, as well as to measure the gap of the collec-
tive pseudo-Goldstone mode, which is the hallmark of the
proximity of the system to the bicritical point with enhanced
symmetry. Alternative experiments for the investigation of
this proximity include a direct measurement of the dispersion
relation via Bragg spectroscopy on the lattice? or analyzing
the system subject to slow rotation, which also acts as a
current defavoring SF against CDW order.?’
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FIG. 4. (Color online) Computations of the ground state on a 1D
lattice with 60 sites for U/J=-20 using TEBD methods. (a) Corre-
lation functions characterizing the CDW and DSF phases in a sys-
tem with open boundary conditions plotted on a log-log scale as a
function of distance x. Values are shown for N=60 particles, where
the correlation functions are almost identical, and N=50 particles,
where the decay of the CDW correlations are significantly more
rapid than the DSF correlations. (b) Algebraic decay exponents
Kpsp and Kcpw that are fitted to the envelope of the correlation
functions for varying mean density n. Error bars show typical errors
in the fitted decay.

We further comment on the relation of our spatially
modulated superfluid for nonvanishing v to a supersolid. The
latter is defined as a state with simultaneously and spontane-
ously broken phase and translation symmetry. In our case,
both symmetries are broken but the translation symmetry
breaking is explicit and not spontaneous. Though the corre-
lations are those of a supersolid, we would not term the state
as such.

Finally, we note that the evolution of the system from
repulsive to attractive coupling may be viewed as a transition
from a spin 1 model (three onsite states) to a spin 1/2 model.
The x-y ordered phases of these two models are separated by
the Ising transition discussed in more detail in the next sec-
tion.

B. Complementary exact numerical study in one dimension

We now investigate how the key features of these results
manifest themselves in a one-dimensional (1D) system. This
can be done by computing the ground state of the con-
strained Bose-Hubbard model using the time evolving block
decimation (TEBD) algorithm.?® Note that we optimize our
algorithm for the conserved total number of particles,?
analogously to the optimization for good quantum numbers
in density-matrix renormalization-group methods.?® In Ref. 3
we already observed quasi-off-diagonal long-range order in
the DSF correlation function (b/b!b;,b;,.), together with ex-
ponential decay of off-diagonal elements in the single-
particle density matrix (bj'bj). This indicated the transition
between the ASF and DSF phases in the 1D system.

Here we particularly investigate the situation near half-
filling n=1, paying attention to the interplay between DSF
order and CDW order, characterized by the density-density
correlation function CDW (x)={n;n;,,)—{(n;{(n;..). In Fig. 4
we compare the DSF and CDW correlation functions for the
ground state on a 60-site lattice with U/J=-20 and open
boundary conditions. In Fig. 4(a) we plot the correlation
functions both for N=60 (half filling of dimers) and N=50.
At half filling the algebraic decay of these correlation func-
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FIG. 5. (Color online) Numerical validation of symmetry en-
hancement SO(2) — SO(3). The plot shows the exponents Kpgr and
Kcpw describing the algebraic decay of DSF and CDW order in the
ground state as a function of the ratio U/J at unit filling n=1. For
sufficiently large interactions, the coincidence of the decay expo-
nents signals the degeneracy of the two kinds of orders. These cal-
culations were performed with TEBD methods for 60 particles on
60 sites. Open boundary conditions were used, but the decay expo-
nents were fitted within the central 30 sites. The fitting errors are
similar to those in Fig. 4(b). Number of Schmidt coefficients re-
tained in TEBD calculations x=200.

tions is essentially the same, indeed the correlation functions
are essentially equal, indicating coincidence of CDW and
DSF orders in this state. While reducing the total number of
particles on the lattice to N=50 does not significantly change
the DSF, the density-density correlation function decays
much more rapidly in the ground state, in addition to large
superimposed oscillations. This relative sensitivity of the
correlation functions is characterized in Fig. 4(b), where we
show the result of fitting an algebraic decay xXi to the enve-
lope of each of the correlation functions. Again, we see that
the decay of CDW and DSF correlations is identical within
fitting errors at unit filling, but the CDW is very sensitive to
deviations from unit filling, and it is dominated away from
n=1 by the DSF.

In Fig. 5, we study the approach of the bicritical point at
fixed half filling n=1 as a function of the ratio of hopping
and interaction J/U. The plot clearly shows the symmetry
enhancement from the conventional U(1)=SO0(2) to an
SO(3) symmetry. The two decay exponents describing DSF
and CDW order approach each other for sufficiently strong
attractive onsite interaction U, thus indicating the degeneracy
of the two different kinds of order.

In an experiment it would be difficult to produce a setup
with an exactly commensurate number of particles and lat-
tice sites. One way to observe emergence of the CDW order,
though would be to prepare the system in a harmonic trap-
ping potential, where the density would vary across the trap.
In Fig. 6 we investigate the ground state for 30 particles on
60 lattice sites in the presence of such an external harmonic
trap. In Figs. 6(a) and 6(b) we show the correlation functions
for CDW and DSF order as they vary across the trap. We
note that the DSF order is significant throughout the occu-
pied region. We have checked in addition that across this
region, the off-diagonal elements decay algebraically as a
function of distance. On the other hand, the CDW correla-
tions are most significant in regions near unit filling. For the
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FIG. 6. (Color online) Computations of the ground state with 30
particles on 60 lattice sites with U/J=-20, in the presence of a
harmonic trap with onsite potential V(x). (a) Shaded plot of the
CDW correlation function (n,n,)—(n)(n,) (with interpolated col-
ors, and diagonal elements not shown), showing substantial order
near x=y=20 and x=y=40, where the mean filling factor n~1
regions. V(x)=V,(x—30.5)%, V,,=1.33 X 1073. (b) Shaded plot of the
DSF correlation function DSF(x— y):(bibibvby) (with interpolated
colors), showing substantial order across the 'occupied region of the
lattice, for the same trap parameters as part (a). (c) Density n(x) for
the same parameters as parts (a) and (b). (d) Plots of the DSF
correlation function DSF(x) for a trap V(x)=V,(x-30)% V,
=0.7/30%>~7.78 X 10~* with and without an additional superlattice
potential Vg, /23,(-)".

trap parameters chosen here, this occurs near sites 20 and 40,
as shown in Fig. 6(c), where we also see significant oscilla-
tions in the density, which are also characteristic of the ap-
pearance of CDW order. In Fig. 6(d) we then investigate how
the order can be manipulated by the addition of a weak su-
perlattice. We see that the addition of an alternating potential
on the order 0.01J is sufficient to significantly increase the
algebraic decay exponent for DSF order. Because the system
size is small, it was difficult to obtain reliable results for the
algebraic decay exponent of CDW order, but our calculations
indicate that applying such a superlattice can indeed be used
to select the dominant order for a system in the presence of a
harmonic trap.

Using time-dependent density matrix renormalization
group (t-DMRG) methods we can also investigated possible
time-dependent preparation of the continuous supersolid be-
ginning from a Mott insulating state in the presence of a
superlattice, analogously to the studies performed in Ref. 3.
Beginning in an insulating state with two atoms in the lowest
wells of a period two superlattice, it is possible to prepare a
state with n=1 and U/J=-20 in a time scale of the order of
100J-!, with good fidelity of the DSF correlation functions,
provided that a sufficiently strong constraint can be imposed
so that no loss events occur on the time scale of the ramp.

V. LONG-WAVELENGTH LIMIT: NATURE OF THE
PHASE TRANSITION

Even at low energies, nonlinearities in the effective action
may, in principle, have an impact on the physical observ-

PHYSICAL REVIEW B 82, 064510 (2010)

ables, such as the nature of the phase transition. Such a sce-
nario is known as Coleman-Weinberg phenomenon.'* Two
near gapless degrees of freedom are coupled to each other, in
a way that a phase transition which one of them undergoes is
driven first order due to the long-wavelength fluctuations of
the other: the first-order transition is radiatively induced.

In our problem, indeed we face competing low-energy
degrees of freedom at the ASF-DSF transition. First, there is
the gapless Goldstone mode present in the dimer condensate,
which does not undergo qualitative changes at the ASF-DSF
transition point. Second, at the Ising-type transition one ex-
pects a Z, degree of freedom to emerge in the low-energy
sector for the atom degrees of freedom. A possible coupling
between those low-energy degrees of freedom may or may
not give rise to a Coleman-Weinberg mechanism.

Here we study this question by means of a systematic
derivative expansion of the effective action. At “low” densi-
ties n=0,2 we identify a first-order transition in line with
known results for continuum bosonic Feshbach models at
low density.®® Such a reproduction of the continuum results
must be generally expected in low-density lattice systems.
This situation is seen to be rather generic in nonrelativistic
systems.?!=33 But, intriguingly, there is a lattice-based decou-
pling mechanism which guarantees the existence of a
second-order transition, and thus a true quantum critical
point, in the vicinity of n=1. Thus, we identify a true Ising
quantum critical point in our system, connecting the two or-
dered ASF and DSF phases.

Note that the scenario crucially hinges on the control over
a coupling of the two near gapless modes close to the tran-
sition. It is evident that the discussion cannot be lead based
on a simple quadratic spin-wave theory.

A. Low-energy derivative expansion

Our strategy is as follows: we will approach the phase
transition from the DSF side, where there is not yet an
atomic condensate, and tune the atomic-mass parameters to
criticality from there. For this purpose, we draw the low
energy, continuum limit of the effective action corresponding
to Eq. (30). We then identify the relevant low-energy fluc-
tuations and integrate out the massive degrees of freedom.
We arrive at an action that describes the dimer Goldstone
physics, the Ising degree of freedom as well as a cubic cou-
pling of Goldstone mode to Ising density. The derivation is
similar to the one presented in Ref. 7 in the continuum, dif-
fers, however, in the crucial aspect that the model discussed
there features already microscopic propagating dimer de-
grees of freedom. Here we show how such terms are gener-
ated via successive integration of the massive degrees of
freedom.

At low energies, the action corresponding to Hamiltonian
(30) encounters two immediate simplifications. First, we
consider the constraint X;=1—-7; ;—7,;: the density operators
are less relevant than the number 1 at low energy. Conse-
quently we replace X;— 1. By this replacement, we effec-
tively drop the local constraint for the atoms and dimers.
Physically, this is justified from the fact that infrared fluctua-
tions with wavelengths much larger than the lattice spacing
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do not resolve single sites—as stated above, while symme-
tries provide scale-independent restrictions of the form of the
effective action, the relevance of the constraint principle de-
pends on scale. Second, we draw the continuum limit. Our
original Hamiltonian (30) often contains bilocal terms. In the
quadratic sector, the resulting spatial derivative terms are
kept: they describe spatial propagation and may be leading in
the infrared for zero-mass terms encountered close to the
phase transition. However, in the interaction terms we drop
the gradient couplings if they appear in combination with a
local one, which in comparison is always more relevant in
the sense of the renormalization group. Finally, we drop the
local quartic terms coupling atoms with dimers, which are
subleading in comparison with the local cubic ones. The cor-
responding action reads

S=S1[b},b\]+ Sa[bh,by] + Sl b}, by, 0],
&wd=fbH&—M—@2M+w¥%JU+M%&+mm
- \EJcs[bl(z +A)b, +c.c],

MmkIQM+@m+mw—ﬁm,

Sindl b1,b5] = f JZ[3es(bl + by)ity - \E(C2 —s2)(b3bT +c.c)].

(65)

[f,=fdrd%, x=(7,%),A the Laplace operator. We omit the
(7,X) dependence of the field for brevity.] Here and in the
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following we have chosen s real without loss of generality.

In the next step we identify the relevant phase fluctua-
tions. The terms in the action Eq. (65) are seen to be in two
classes. The first one is made up of field combinations which
transform according to U(1) X U(1) (the first phase rotation
acts on b; and the second on b,), i.e., they do not lock the
phases. In contrast, the cubic interaction terms in the last line
of Eq. (65) lock the phases such that the residual symmetry
is a single U(1). [Such a mechanism breaking U(1) X U(1)
— U(1) is a consistency check for our theory, which emerges
from a constrained version of the Bose-Hubbard model, in
turn only possessing a single U(1) symmetry.] The dominant
temporal and spatial phase fluctuations thus originate from
the vicinity of the phase constraint emerging from the phase
locking of the atomic to the dimer phase, 6,(x)=26,(x). To
bring out the physics of these fluctuations, it is convenient to
perform a local gauge transformation on the b, field such as
to absorb the 6, fluctuations.” Here we work in Cartesian
coordinates for the fluctuating fields, and consequently the
gauge transformation is realized linearly. The gapless phase
fluctuations of the dimer field are represented by its imagi-
nary part, by(x)=(o(x)+im(x))/ V2 [cf. Eq. (15)]. To absorb
the phase fluctuations into b;, we introduce dressed fields
according to

by(x) — gl(x) = bl(x)[l —ixm(x)],

k=(c?-s)/(2 \r/zcs). (66)

Now the gauge transformed action can be calculated. In this
expression, we only keep leading terms which are affected at
linear order in the infinitesimal rotation. The result is

oo A =~ (O +mi=J(1+5D)A —2\*’5.lcs(z+A) b,
Sdﬂﬁdz—f(ﬂﬁo ; o
2J, —2\2Jes(z+A) = dp+my=J(1+s)A J\pT
|
Sindbl.by 0, 77] = f \Eik&ﬂfﬂlgl +Jzo[3 \J’Ecsl;{'gl Sill@, 0, 7] = f -4 (@ + ) + o(N_@* + N ),
(=) BBy + BN (67) (68)
2 —

with m?=~ |U|/2 Jz(1+5?), using —u=|U|/2—as we are where &= 25 il =—|U|2—28, A

only interested in the low-energy limit, the precise value of
the couplings is unimportant, and we will work with the
mean-field values (which are, however, expected to be rather
accurate except for the small density regime n=0, cf. Sec.
III). As a preparation for the elimination of the massive
modes, we further introduce Hermitian fields for the single-

particle excitations b 1=¢@+i, such that the action reads

-8A o, M¢)
—id, m=-8A)\y)’

Sile. ¥ == f(wﬂ)(

=Jz[3cs/\2 % (c*=s?)], and again we keep only leading
terms. As appropriate for the phase mode, the field 7 inter-
acts with the atomic fields ¢ and ¢ only through its tlme
derlvatlve while the field o interacts directly. Note that m
>m?, and upon approaching the phase transmon m hlts
Zero pr10r to m>.%7 Indeed the condition m =0 commdes
with Eq (45) if we also use the mean-field equatlon of state
n=2s%. For vanishing m,, we then find m =4 ZCst
=4yn(1-n/2)Jz within the mean-field approximation for the
high-energy physics. Hence, the field ¢ (the imaginary part
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of the atomic field 51) remains massive for any density 0
<n<2 at the transition, and we may safely integrate it out
perturbatively at the one-loop level while the remaining de-
gree of freedom ¢ becomes soft and plays the role of an
Ising field. The resulting effective action for the fields ¢, ,
and o reads

1
Sle,m,0]= f {E()'(M2 - §iA)a’+ ioda+ i%&ﬂrqoz
x N

+ {07 - ETAm+ %‘P(mi - Z(p(?%. - ﬁA)go} )
(69)

where M2~ )\%/mz, i~ Kz/mg, §2 ~ 5(2,~ )\%gz/mi, and Z,
~mZ2. [Note that in the limit |U|>Jz both fields ¢ and ¢ are
massive and, after integrating them out perturbatively, we get
Eq. (46) for the effective dimer Hamiltonian of the b, field.]
The field o now becomes massive and can be integrated out
as well. The final effective action for the fields ¢ and 7 is

1
Seff[so,W]=f {5¢(—Z¢£—§3A+mi)¢+ Ao
1 2 . K 2
+ 577(— Z(?i— & A)77+1,—E(9717(p (70)
\‘J

with Z~M=2 and N~\2/M? This action describes a
coupled theory for the Goldstone mode 7 and the Ising mode
¢. Note that here we also keep a fourth-order Ising coupling.
Its presence being rooted in the tree-level o exchange, this
coupling is positive. Thus, the low-energy theory contains an
Ising part, i.e., a real field with quartic potential which ex-
hibits Z, symmetry breaking when mi turns negative. If this
part of the action were isolated, the transition would be in the
Ising universality class, and therefore of second order. In the
presence of the Goldstone-Ising coupling, more care needs to
be taken. In general, a coupling of two (near) gapless real
bosonic degrees of freedom can lead to a fluctuation induced
first-order phase transition, known as the Coleman-Weinberg
phenomenon.'* The Ising self-interaction N and the Ising-
Goldstone coupling « can be compared via naive power
counting:3* the canonical dimension of \ is 3—d and that of
k is (3—d)/2. Thus, in any dimension the corresponding
terms have the same degree of relevance and therefore com-
pete with each other.

The form of the action Eq. (70) coincides with the one
obtained in Ref. 7 from the continuum Feshbach model. The
renormalization-group analysis of the action Eq. (70) for
nonzero k has been performed in d=3 by Frey and Balents®!
at 7=0 and extended to nonzero temperature by Lee and
Lee,’? revealing a Coleman-Weinberg phenomenon. Thus,
for a generic k# 0 the phase transition will be driven first
order. This scenario is realized in the low-density limits n
~(,2, where our conclusion thus matches the expectations
from the continuum, which was anticipated in Refs. 6 and 8
and discussed in detail in Ref. 7.
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However, the lattice offers the possibility to penetrate the
regime where n=1. Here, an intriguing situation appears.
There exists a point in the phase diagram at which the coef-
ficient of the cubic terms vanishes exactly, which happens
due to the zero crossing of the coupling k. From Eq. (66) we
have k~c?-s>. Working with the mean-field equation of
state n=2s%, one concludes that this takes place at n=1. In
reality, renormalization effects will add contributions to the
naive value of «. Furthermore, inspection of the full equation
of state [Eq. (25)] suggests further shifts from the naive ex-
pectation, but we have seen in Sec. III C that close to n=1
these are small. Thus, we expect the decoupling point to be
located in the close vicinity of the commensurate point n
=1. We provide further evidence for this expectation from a
symmetry argument in the next section.

B. Symmetry argument for the Ising quantum critical point

The decoupling of Goldstone and Ising mode at a special
point in the phase diagram can also be obtained from a sym-
metry argument. Being based on a combination of the phase
locking symmetry between the degrees of freedom b;,b, and
a temporally local gauge invariance, it complements the
above explicit derivative expansion and sheds more light on
the origin of the decoupling of Ising and Goldstone physics.

For this purpose, let us first discuss the temporally local
gauge invariance of the Bose-Hubbard Hamiltonian® in the
presence of an infinite three-body repulsion, which is equiva-
lent to the constrained model under consideration here. This
adds a local term to the standard Bose-Hubbard Hamiltonian

H= lim [HBH+ 7D Al - 1>(ﬁ,~—2>]. (71)

Y3

The temporally local gauge invariance results simply from
the fact that the Hamiltonian is not explicitly time dependent
(while it is spatially nonlocal, such that a spatially local
gauge invariance does not exist). Consequently, the con-
strained Bose-Hubbard action must take the form

o= [ @S 160, wa e r@ ] 02

such that the temporally local gauge invariance is expressed
as an invariance under

M ,u+iﬁ,)\(l‘). (73)

Since our construction must conserve this property, we also
require this invariance for the theory defined with Eq. (30).
On the level of the effective action and in Fourier space, this
invariance translates into the Ward identity for the effective
action

a; — exp iN(t)a;,

K2 5T

B I 5b;r/2(61)5b1/2(4)
4 5T
- iw) 8b1,2(q) 8by5(q)

by,=0:4=0

. (74)
by=0:4=0

i.e., the coefficient of the linear time derivative must equal
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the derivative with respect to the chemical potential. There-
fore, in a derivative expansion of the effective action, which
is appropriate at low energies, we have

F=Jbf[z187+y1&i+mf+~--]b1+€(b12+bf)

+ bi[ 220+ Yoo+ m5 + -+ 1by + h(bYbT + byb*) + -+ .
(75)

The presence of a condensate for b,, 8+ 0, generates off-
diagonal terms in the b; inverse propagator, i.e., € # 0. Here
we restrict to the spatially local part of the effective action,
since this is the sector where the coupling of Ising to Gold-
stone mode emerges. The Ward identity Eq. (74) implies
Zip==0m} ) =g

Furthermore, using solely the global gauge invariance, we
can make the connection between g, and g,. Indeed, we have
a phase locking in the K?VKUOT+H.c. term. As a conse-
quence of these terms, the phases of b, and b, cannot trans-
form independently, and we have

by;—expikby;, by;— exp2i\b,;, (76)

leading to the additional Ward identity
K T a9 5T
I Sb1(9)0b1(9) |y, om0 O D@2 | 040
(77)
or g,=2g;. In sum, we have the following relations:
L =8r=22=12g;. (78)

Next we discuss properties of the “compressibility” cou-
pling g,(n)=—dm3/du|, which fixes how strongly the
bound-state excitation couples to the chemical potential. In
the limits n=0,2 we can compute it exactly from the solution
of the corresponding two-body problems Eq. (33). At n=0,
we find g, >0 while at n=2, we obtain g, <<0. These oppo-
site signs can be expected, as at n=0 the excitations are
well-defined dimers while at n=2 we face well-defined di-
holes. If we do not redefine the chemical potential, then add-
ing a dihole is energetically equivalent to delete a dimer.
Under the mild assumption that the compressibility is a con-
tinuous monotonic function of n (our description is tailored
to describe the DSF phase including the phase border, and
therein we do not expect additional phase transitions), then
g»>(n) must have a unique zero crossing. We note that we
should use the above derivative prescription as an opera-
tional definition of g,; in principle, there could be a
p-independent constant adding to the full mass or gap term
of b,. For b, such a situation takes actually place and we
have an additional mass or gap term U.

As a consequence of Eq. (78), a zero crossing of g, also
implies a zero crossing of the coefficients z,,g,z;. Thus, the
leading frequency dependence is not linear, but quadratic,
and the analogous statement is valid in the time domain,
where the leading behavior is a quadratically appearing time
derivative.

With this result, we now discuss the possible form of the
coupling of the Ising to the Goldstone mode. As above, we
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decompose linearly into massive and phase mode and absorb

the phase fluctuations into dressed b, fields, b1—>l71=b1(1
—ikm/2%?), R=h/€. Indeed the low-energy effective action
can only depend on derivative couplings associated to the
phase mode 77, due to the global U(1) invariance under trans-
formations 77— 7+ \. The transformation cancels the cubic
term in Eq. (75) associated to phase fluctuations while the
contribution associated to the real part o can be dropped at
low energies since the amplitude is massive. At the same
time, the b, part in the dressed frame now reads

r = f Filerdt @+ m 4 -1, + ieyRo,mb1B,

+ iy RPmbiby + . (79)

Thus, for g,=0, Eq. (78) also implies that the cubic deriva-
tive coupling z;K with canonical dimension (3—-d)/2 van-
ishes. The leading term is a cubic coupling with quadratic
time derivative. This coupling has canonical dimension (1
—d)/2, and thus is irrelevant near a Gaussian fixed point for
d>1. Similarly, a potential U(1) symmetric coupling term
g'[(9,m)?¢* has canonical dimension 1—d. Both therefore
do not lead to a Coleman-Weinberg phenomenon. In conse-
quence, Goldstone and Ising physics effectively decouple at
low energies, giving rise to a second-order Ising transition.

We summarize our result. Based on the zero crossing of
g, phase locking and temporally local gauge invariance we
find: (i) at the zero crossing point, the nonrelativistic time
derivative terms vanish. In the sense of a derivative expan-
sion, the next relevant term is &i, in which case the theory
acquires a relativistic space-time isotropy in a
d+1-dimensional space time. This is physically sound, as
this point has a special kind of (di)particle-hole symmetry, in
that the hybrid excitation consists of a superposition of
dimers and “diholes” to equal parts. However, we note the
absence of a particle-hole symmetry in the conventional
sense—such a situation only occurs in the perturbative limit
J/|U|—0, as discussed in Sec. IV. Beyond the leading order
perturbation theory, this symmetry is broken. One manifes-
tation of the absence of this symmetry is the asymmetry of
the critical line in the phase diagram, cf. Fig. 2.

(ii) The cubic coupling of Goldstone to Ising mode also
vanishes at this point. Only terms which are irrelevant in d
>1 dimensions then can couple these modes. As a conse-
quence, the Coleman-Weinberg mechanism is suppressed.

We observe that the constraint influences the physics even
at very long wavelengths. It is responsible for the existence
of a maximum filling, in turn leading to the existence of a
zero crossing of the dimer compressibility, in turn respon-
sible for the existence of the Ising quantum critical point.

In conclusion, close to the “particle-hole symmetric”
point at n=1, there is a d+ 1-dimensional Ising quantum
critical point. Examples of physical realizations of Ising
quantum critical points in nature are actually rare. Several
systems exhibit Ising-type phase transitions with discrete
symmetry breaking, like the ASF-DSF transition in the con-
tinuum Feshbach model®® and or a transition between super-
conductors with different pairing symmetries,3* but in these
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cases in the long-wavelength limit a Coleman-Weinberg phe-
nomenon takes place. A cubic coupling of the Goldstone
mode with linear time derivative to the Ising density is ac-
tually quite generic in nonrelativistic systems, where the
Ising mode emerges as an effective degree of freedom de-
scribing the transition from one ordered phase to the other.
Here we have identified a mechanism that suppresses this
coupling. One of the few other examples for Ising quantum
criticality is possibly provided by the model magnet
LiHoF,,%® though the issue is debatable due to the long-range
interactions in the material, preventing an exact mapping to
the Ising model.

The fact that qualitative aspects of the critical behavior
are changed in the vicinity of the particle-hole symmetric
point n=1 bears some resemblance to the physics at the tip
of the Mott lobe in the repulsive Bose-Hubbard model.
There, the behavior changes from the nonrelativistic O(2) (or
XY) universality class with dynamical exponent z=2 to the
relativistic O(2) model with z=1.77

C. Estimate of the correlation length

To get an impression of the perspective to observe Ising
quantum criticality in this system experimentally, we esti-
mate the correlation length. This quantity is accessible with
current experimental technology®® and has been measured in
continuum Bose gases to characterize critical behavior.

The Coleman-Weinberg phenomenon manifests itself in
the presence of “runaway” trajectories on the renormaliza-
tion group (RG) flow diagram. We therefore can estimate the
correlation length at the first-order phase transition as a scale
I, at which the runaway trajectory with the corresponding
initial conditions hits the boundary of the stability region of
the system.'® The instability is characterized by the quartic
Ising coupling A turning negative, i.e., the condition A(L,)
=0.

The scaling properties of the action Eq. (70) are deter-
mined by three pararneters V=(¢&/ §+)\Z /1Z, U
=4IN/ENZ,, and K= K2§2/§3Z\Z with the corresponding
RG equations derived in Ref. 31. The quantity V scales to
zero, therefore we can put V=0 from the very beginning.
Then the RG equations for the remaining constants K and U
read

1 dK 1 5
——=g--U-=K, (80)
K dl 47 2

1dU 3 K>

——=g--U-6K-24—, (81)

U dl 8 U’

where e=3-d. To solve these equations, we first introduce
new functions k=K exp(-el), u=U exp(-¢l), and a new
variable x=exp(el). The equations then have the following
form:

dk 1 5,
e—=—|—uk+ -k |, (82)
dx 4 2
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du 3 )
e— =— | —u® + 6uk + 24k (83)
dx 8

Writing u=kf(k) and, therefore du/dk=f+kf’, we obtain

df dwdx | f+28f+192 (f+12)(f+16)
dk dkide 7 2f+20  2(f+10)
(84)
This equation can easily be solved with the result
k +16 \( fo+12
v L v SR
ko f0+ 16 f+ 12

where fo=ugy/k is the initial value for the function f when
k :ko.
It follows from Eq. (83) that

sd—” =- —[sf2 +48f+192] = s—[kf(k)] g—f[f— ]
dx df
and, after using Eq. (84), we obtain

gk 1 10"
e == (+16)(f+12)= 8ko(fo+12)(}%“6)3-

The solution of this equation reads

x=1_ expeh-1 8 1 {1 <f0+16)3}
e & T Bkofo+ 12 f+16

(86)

and, together with Eq. (85), provides a general solution of
the RG Egs. (82) and (83) and, therefore Egs. (80) and (81).
The above solution allows us to find the scale /.., at which
the RG flow reaches the border of stability, U(l.)=0. In three
dimensions we obtain (after taking the limit e=3-d—0)

__ 8 fo)’
_l*_3k0(fo+12)[1_(1+ 16) ]

with fo=uy/ky. As a result, close to the Ising critical point,
ko— 0, we get

L.~ kg ~ (1 =n).

This result indicates a rather broad critical domain in den-
sity around the true Ising critical point, in which the corre-
lation length extends over the whole system. Such extended
quasicritical behavior can be expected for a fluctuation-
induced first-order transition, which results exclusively from
the competition of very long-wavelength degrees of freedom,
and therefore should be weak. For example, already at fill-
ings n=1/4,2—1/4 the correlation length is on the order of
15 lattice sites, and greatly exceeds the typical size of an
optical lattice of 20-100 sites at fillings 1/2, 3/2 already by a
factor of 10. We conclude that the Ising quantum critical
behavior should be experimentally observable in our system.

Finally, we emphasize that the discussion presented in this
section crucially hinges on the fact that our field theoretic
setup allows to fully assess the effects of interactions, i.e.,
nonlinearities in the effective action. Here we have shown
that these interaction effects persist even down to arbitrarily
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long wavelengths. Obviously, such a scenario is not captured
in a simple quadratic spin-wave theory with a priori decou-
pled atomic and dimer excitations.

VI. CONCLUSION

In this paper, we have performed a detailed analytical
investigation of the phase diagram of the attractive lattice
Bose gas with a three-body hardcore constraint. For this pur-
pose, we make use of a method presented in Ref. 10 which
allows to exactly map the constrained model to a theory for
two unconstrained bosonic degrees of freedom with conven-
tional polynomial interactions. Within this framework, we
particularly focus on effects tied to interactions, which can-
not be addressed within a mean-field plus spin-wave ap-
proach. While our analysis confirms the rough features of the
phase diagram obtained from a simple mean-field
approach—the presence of an Ising-type phase transition
from an atomic to a dimer superfluid, numerous interaction-
driven effects are identified. These arise on various length
scales, ranging from the fluctuation induced formation of the
dimer (or dihole) bound state on top of the vacua at n=0 and
n=2 on the microscopic level over a an understanding of the
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beyond mean-field effects causing nonuniversal shifts in the
phase boundary and giving rise to the proximity of the sys-
tem to a bicritical point with enhanced SO(3) symmetry in
strong coupling, down to the assessment of the true nature of
the phase transition at very long wavelength. This underpins
the fact that short- and long-range correlations can then be
treated within a unified formalism.
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